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EFFECT OF RADIATION SCATTERING ON THE MELTING AND SOLIDIFICATION

OF A FLAT LAYER OF A TRANSLUCENT MEDIUM

UDC 536.3+536.42N. A. Rubtsov and N. A. Savvinova

The paper considers the effect of isotropic and anisotropic scattering of radiation on the melting
(solidification) of a flat layer of a semitransparent medium between opaque surfaces. The mathe-
matical model of the phase transition is the classical formulation of the Stefan problem. From re-
sults of numerical calculations it follows that radiation scattering has a significant effect on the rate
of propagation of the phase transition front and formation of a temperature profile during melting
(solidification) of a semitransparent medium.

Investigation of the complex radiative-conductive heat transfer (RCHT) during melting and solidification of
semitransparent materials covers a wide range of temperatures — from low temperatures (for example, melting of ice
by solar radiation) to high temperatures (for example, growth of crystals from melts or production of semitransparent
materials). Because semitransparent media are highly transparent to thermal radiation in particular spectral regions,
experimental studies of temperature fields in the bulk of a semitransparent material seem difficult. Therefore,
investigation of the effect of thermal radiation on the formation of temperature fields and heat fluxes during melting
and crystallization of a semitransparent material is of great practical significance. In this connection, numerical
studies of the radiative-conductive heat transfer during phase transition of a semitransparent medium is an urgent
problem. At present, have been few papers on this problem (see, e.g., [1]). Golova and Rubtsov [2] studied the
effect of isotropic scattering of radiation on the melting of a semitransparent medium. Oruma et al. [3] investigated
the effect of anisotropic scattering in a two-phase region on the rate of melting (solidification) of a semi-infinite
semitransparent medium using a generalized model of phase transformation.

In the present paper, we study numerically the formation of a temperature field and radiant fluxes during
melting and solidification of a flat layer of a semitransparent medium of thickness L which is between opaque,
diffusely radiating and reflecting surfaces (Fig. 1). With satisfaction of the condition of local thermodynamic
equilibrium and in the absence of convection, the Stefan problem in the classical formulation with constant thermal
properties is written in dimensionless form
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Here θ = T/Tr, ci = Ciρi/(Crρr), Λi = λi/λr, ξ = x/L, s = S/L, Φi = Ei/(σT 4
r ), η = 4σT 3
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r L) is a radiative-conductive parameter, C, ρ, and λ are the heat capacity, density, and thermal
conductivity of the material, respectively, Ei is the resulting radiant flux density, t is time, and σ is the Stefan–
Boltzmann constant; the subscript r denotes the determining parameter, and the subscripts i = 1 and 2 correspond
to the phases on the left and right of the interface s(η), respectively.

At the interface, the classical Stefan condition has the form

±Y ds

dη
= Λ1N

∂θ

∂ξ

∣∣∣
S−
− Λ2N

∂θ

∂ξ

∣∣∣
S+
− 1

4

(
Φ1

∣∣∣
S−
− Φ2

∣∣∣
S+

)
, (2)

Kutateladze Institute of Thermal Physics, Siberian Division, Russian Academy of Sciences, Novosibirsk
630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 42, No. 6, pp. 98–105, November–
December, 2001. Original article submitted May 18, 2001.

0021-8944/01/4206-1007 $25.00 c© 2001 Plenum Publishing Corporation 1007



Fig. 1. Two-layer system with a mobile interface.

where Y = γρph/(ρrCrTr) (γ is the phase-transition heat and ρph is the density at the phase-transition temperature).
The temperature at the interface is constant and equal to the phase-transition temperature: θ(s(η)) = θ∗ =

Tph/Tr.
The initial conditions are written as θ(ξ, 0) = f(ξ) and s(0) = 0.
The solution of the problem consists of determining the temperature θ(ξ, η), the resulting radiant

fluxes Φ(ξ, η), and the position of the front s(η) in the region G = {0 6 ξ 6 1, 0 6 η 6 η1}.
The energy equations (1) and (2) are solved by a finite-difference method. The implicit difference scheme is

constructed using an integrointerpolation method. The obtained nonlinear system of difference equations is solved
by marching and iterative methods. In this case, the radiant fluxes in the energy equation are internal sources and
are determined from the solution of the radiative transport equation with known temperature distribution.

In the problem of RCHT in a semitransparent medium with a first-order phase transition, the most difficult
problem is to solve the integrodifferential radiative transport equation for a system consisting of two or more layers
with a mobile interface. In [4–6], the density resulting radiant flux density was determined from the intensities
of forward and backward radiation expressed in terms of formal solutions of radiative transport equations. The
integrals included in the formal solution were obtained numerically. This solution is cumbersome because each time
when changing the boundary conditions and considering radiation scattering and selectivity, one needs to obtain
formal solutions.

There are a great number of approximate methods for solving the radiative transport equation. Modifications
of the mean flux method offer ample opportunities for account of scattering anisotropy, boundary reflection of
radiation, and radiation selectivity, as applied to radiative and complex heat transfer. Within the framework of
this method, the integrodifferential transport equation reduces to a system of two nonlinear differential equations.
Among the advantages of this method is the fact that it is easily extended to the case of a selective medium and is
applicable to multilayer systems. Rubtsov and Timofeev [7] propose a method for solving the stationary problem
of RCHT in a multilayer semitransparent system. Based on the mean flux method, an algorithm for determining
radiant fluxes was developed, which yields good accuracy and convergence. In the present paper, the indicated
algorithm is used to solve the nonstationary problem of melting and solidification of a semitransparent material to
determine radiant fluxes.

The differential analog of the radiative transport equation for hemispherical fluxes in each layer of the system
is written as
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Here the subscript j denotes the band number in the spectrum with constant values of the optical parameters and
the subscript i refers to the relevant layer.

The boundary conditions on the opaque, diffusely radiating, and reflecting surfaces have the form
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At the interface, the equation linking the hemispherical radiant fluxes can be obtained from balance relations
taking into account boundary reflection and the total internal reflection due to the difference in refractive indices.
We set n1 = n2. Then, on the inner boundary the following condition is satisfied:

τj1 = τ0j1: Φ−j1 = Φ−j2, Φ+
j2 = Φ+

j1. (5)
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band ∆νj , ϕb(∆νj) is the Debye function [7], m±ji and δ±ji are transport coefficients, which are functionals of the
solution and are obtained by iterations, nji is the spectral refractive index, Iν is the spectral radiation intensity,
µ is the cosine of the angle between the direction of radiation propagation and the x axis, τνi = kνix is the spectral
optical thickness, kνi = ανi + βνi is the spectral attenuation factor, ανi and βνi are the spectral absorption and
scattering factors, respectively, εji and rji are the emissivity factor and reflectances from opaque surfaces, ωji is

the single scattering albedo, ζ̄νi =
1
2

1∫
−1

pνi(µ)µdµ is the mean spectral cosine of the scattering angle, and pνi is the

spectral scattering indicatrix, which is the expansion in Legendre polynomials:

p(µ0) = 1 +
L∑
l=1

alPl(µ0) (6)

(µ0 is the cosine of the angle between the incident and scattered beams).
The mean flux method uses a truncated three-term scattering indicatrix because for l > 2, the number of

differential equations and unknown functions increase, which complicates the solution of the problem. The proposal
to be restricted to three terms in expansion (6) is also justified by the fact that a rather accurate description of the
real situation can be achieved in many cases even with a smaller number of expansion terms.

The density of the integral resulting radiation flux is obtained from the relation Φi =
J∑
j=1

(Φ+
ji − Φ−ji).

Because of the nonlinearity of the radiative problem and the difference in optical thickness between the layers,
this problem is solved using the method of iterations. In each layer, the relevant boundary-value problem including
system (3) with boundary conditions (4) and (5) is solved. The temperature distribution is considered known. The
obtained values of Φi are substituted into the energy equations (1) and (2). In the numerical implementation of
the algorithm of the mean flux method, the dimensionless coordinates of each layer are varied from 0 to 1. In the
solution of the energy equations, the dimensionless thickness of the entire system is also varied from 0 to 1. Thus, the
interface s(η) is between 0 and 1. The disagreement of the layer thicknesses is resolved as follows. The temperature
distribution is first interpolated into the region [0, 1] in each layer, and from known temperatures radiant fluxes are
found, which are then interpolated into specified nodes of the calculation grid of the energy equations. The process
is then repeated.

Numerical calculations were performed for a hypothetical material, whose properties are close to those of
fluorite [Tph = 1700 K, λ2 = λr = 9 W/(m · K), and L = 0.1 m]. The dimensionless parameters of the problem
for melting are as follows: c1 = 0.75, c2 = 1, Λ1 = 2, Λ2 = 1, Y = 0.1, and θ∗ = 0.5. For first-order energy
equations, the boundary conditions are θ1 = 0.7 and θ2 = 0.3. For solidification, we have c1 = c2 = 1, Λ1 = Λ2 = 1,
Y = 0.1, and θ1 = 0.3 (∂θ/∂ξ = 0 for ξ = 1). For convenience of comparison of the results, the parameters of the
problem are same as in [4–6]. The calculations were performed in the gray body approximation with n1 = n2 = 1.5.
The attenuation factors are considered constant over the entire region of frequencies and are determined from the
relations τ1 = k1L and τ2 = k2L.

In [2, 4–6], it is shown that for N < 0.05 (when radiation plays a dominant role in heat transfer) there is
disturbance of the monotonic nature of temperature distribution ahead of the flat front, which is manifested in
overheating of the solid phase during melting or overcooling of the liquid phase during solidification. This causes
instability of the phase transition, and in this case, one should use a different model.
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Fig. 2 Fig. 3

Fig. 2. Motion of the phase-transition front during melting in a scattering solid phase: solid curves
refer to isotropic scattering, dot-and-dashed curves refer to forward scattering (a1 = 1.2 and a2 =
0.5), and dashed curves refer to backward scattering (a1 = −1.2 and a2 = 0.5) for ω1 = 0 and
ω2 = 0.7 (curves 1), ω1 = 0 and ω2 = 0.9 (curves 2), ω1 = 0 and ω2 = 1.0 (curves 3).

Fig. 3. Motion of phase-transition front during melting in a scattering liquid phase: curve 1 refers
to ω1 = 0.9, ω2 = 0, a1 = 1.2, and a2 = 0.5, curves 2 refer to ω1 = 0.9, and ω2 = 0, and curves
3 refer to ω1 = 0.9, ω2 = 0, a1 = −1.2, and a2 = 0.5.

Fig. 4. Temperature distribution (a) and radiant fluxes (b) during melting at various times η: solid
curves refer to ω1 = 0.9, ω2 = 0, a1 = 1.2, a2 = 0.5, and η = 1 (1), 2.6 (2), and 10 (3), dashed
curves refer to ω1 = 0, ω2 = 0.9, a1 = 1.2, a2 = 0.5, and η = 1.63 (1), 4.76 (2), and 20 (3), and
dot-and-dashed curves refer to ω1 = 0.5, ω2 = 0.5, and η = 2.95.
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Fig. 5. Effect of isotropic scattering on the rate of solidification:
1) ω1 = 0 and ω2 = 0; 2) ω1 = 0.7 and ω2 = 0; 3) ω1 = 0.9
and ω2 = 0; 4) ω1 = 0.5 and ω2 = 0.5; 5) ω1 = 0 and ω2 = 0.7;
(6) ω1 = 0 and ω2 = 0.9.

In the present paper, the classical model is used to study the effect of isotropic and anisotropic scattering of
radiation on the rate of motion of the phase-transition front and on the departure of the temperature distribution
from a monotonic profile. The absorption factors are α1L = 1 and α2L = 2 and the radiative-conductive parameter
is N = 0.01.

Results of the present calculations of the temperature distribution and radiant fluxes during melting and
solidification using the mean flux method are in good agreement with the results of [4–6].

The effect of scattering was analyzed under the assumption of black walls (r1 = r2 = 0) for various com-
binations of the single scattering albedo ω1 and ω2 corresponding to the different phases. The calculations were
performed for the following values of the Legendre polynomial expansion coefficients: a1 = 1.2 and a2 = 0.5 (forward
scattering) and a1 = −1.2 and a2 = 0.5 (backward scattering) [8].

The calculation results presented in Fig. 2 show that with increase in the single scattering albedo of the
solid phase ω2 during melting, the velocity of the phase front decreases. Forward scattering in the solid phase
decreases and backward scattering increases the rate of melting compared to isotropic radiation. This can be
explained by the fact that the energy absorbed by the near-front region decreases due to forward radiation. In
contrast, forward scattering in the liquid phase accelerates melting, and backward scattering retards it compared
with isotropic radiation (Fig. 3). The radiation scattering in the liquid during melting enhances the temperature
“outburst” with increase in ω1 (Fig. 4), whereas the radiation scattering in the solid phase reduces it. For large
values of ω2 (ω1 = 0) the temperature distribution becomes monotonic, the radiant flux gradient in the solid phase
decreases (Fig. 4), and the rate of melting decreases compared to the rate of melting in the case of a scattering
liquid phase (curve 2 in Figs. 2 and 3). With increase in scattering, the radiation absorption by the solid phase in
the near-front region decreases, which reduces the temperature “outburst.” The results on isotropic radiation agree
qualitatively with the results obtained in [2].

Investigation of the role of scattering during solidification showed that the liquid-phase scattering is of
significance. With increase in liquid-phase scattering, the rate of solidification decreases considerably compared
to the solid-phase scattering (Fig. 5). For ω2 = 1, the temperature distribution becomes monotonic at any time
(dashed curves in Fig. 6a) and the radiant flux gradient in the liquid to the right of the interface decreases to zero
(dashed curves in Fig. 6b). For smaller values of ω2, the nonmonotonic nature of the temperature distribution is
preserved but to a variable degree (dot-and-dashed and solid curves in Fig. 6a). For any value of ω1 (when the
solid phase is scattering) the temperature distributions remain nonmonotonic. In this cases, forward scattering
accelerates solidification, and backward scattering retards the process compared with isotropic radiation. The effect
of anisotropic liquid-phase scattering is insignificant (Fig. 7).
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Fig. 6. Effect of scattering on the temperature distribution (a) and radiant fluxes (b) during
solidification: dashed curves refer to ω1 = 0, ω2 = 1, and η = 15.54 (1) and 40.63 (2), solid curves
refer to ω1 = 0, ω2 = 0.9, and η = 14.7; dot-and-dashed curves ω1 = 0, ω2 = 0.7, and η = 10.15.

Fig. 7. Effect of anisotropic scattering on the rate of solidification: solid
curve refer to isotropic scattering, dashed curves refer to forward scat-
tering (a1 = 1.2 and a2 = 0.5); dot-and-dashed curves refer to backward
scattering (a1 = −1.2 and a2 = 0.5) for ω1 = 0.7 and ω2 = 0 (curves 1)
and ω1 = 0 and ω2 = 0.7 (curves 2).

The analysis in [3] of the effect of anisotropic scattering showed that backward scattering retards melting
and solidification and forward scattering accelerates these processes. However, in [3], the phase transformation of
a semi-infinite semitransparent medium was considered using a generalized model allowing for the formation of
a two-phase scattering zone at the phase-transition temperature. Hence, scattering only the second semi-infinite
region is scattering.

The results highlight the need for a more correct consideration for the radiation properties related to the
optical inhomogeneity on the boundaries and in the volume of systems undergoing phase transitions.
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